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Stability of a Thick Elastic Plate Under Thrust

by 2
K.N. Sawyers and R.S. Rivlin

Lehigh University, Bethlehem, Pa.

ABSTRACT

TN

N
N
When a rectangular plate of incompressible neo-Hookean

elastic material is subjected to a thrust, bifurcations of the
flexural or barreling types become possible at certain critical
values of the compression ratio. The states of pure homogeneous
deformation corresponding to these critical compression ratios
are states of neutral equilibrium. Their stability is investi-
gated on the basis of an energy criterion, without restriction
on the thickness of the plate.

The critical state corresponding to the lowest order flexural
mode is found to be stable (unstable) if the aspect ratio
(thickness/length) is less (greater) than about 0.2. Agreement
with the classical Euler theory is established in the limiting
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1. Introduction

We consider a rectangular plate of incompressible isotropic
elastic material, with neo-Hookean strain-energy function, to
be situated with its edges parallel to the axes of a rectangular
cartesian coordinate system x . The plate is acted on by forces,
applied as dead-loads normally to the faces of the plate which
are perpendicular to the 1 and 3 axes of the reference system.

The faces perpendicular to the 2-axis are force-free. The con-
straints on the 1 and 3-faces are such as to permit the plate
to undergo pure homogeneous deformations under the action of
the applied forces. The load in the l-direction is assumed to
be a thrust and at certain critical values of this thrust
bifurcations occur.

If the load in the 3-direction is a tension and the 3-
dimension of the plate is sufficiently large, we may assume that
these bifurcations are plane strains in the 12-plane, possibly
superposed on a uniform extension in the73-direction. These plane
strains may be of the flexural or barreling types. The latter have
little practical interest (see §8). They are discussed in the
present paper in the interest of completeness, since their in-
clusion involves negligible complication of the discussion.

The critical compression ratios in the l-direction at which
bifurcations occur have been previously discussed by a number of
authors with various degrees of generality. For flexural bifurca-
tions of a neo-Hookean incompressible material they were first
determined by Biot [1]. They were determined by Sawyers and
Rivlin [2], for an arbitrary incompressible isotropic elastic

material, in both the flexural and barreling cases.

1
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In the present paper we discuss the stability of the states
of pure homogeneous deformation at which bifurcations occur. The
stability criterion employed is the energy criterion and the pro-
cedure used is essentially that of Koiter [3,4,5]*. An equilibrium
state of the system is a state of deformation at which the total
potential energy of the system has a stationary value, i.e. at which
its first variation is zero. This state will be stable or unstable
accordingly as this stationary value is or is not a proper minimum,
i.e. accordingly as the second variation of the potential energy is
or is not positive definite.

A state of pure homogeneous strain corresponding to a bifur-
cation is one of neutral equilibrium. It will be stable if the
potential energy is greater for every state lying in some neighbor-
hood of it, which satisfies the kinematic constraints. It will be
unstable if the potential energy is less for some such state.

(The neighborhood is limited to sufficiently small deformations in
the 12-plane superposed on a uniform extension in the 3-direction.)
We determine whether this is the case by calculating the stationary
value of this excess potential energy. The critical pure homogene-
ous deformation is stable (unstable) if this stationary value is
positive (negative).

These calculations, which are rather cumbersome, are carried
out without restriction on the magnitude of the aspect ratio
(2-dimension/l-dimension) of the plate.' They lead to the conclusion
that, for the lowest mode of flexural bifurcation, the pure homo-
geneous state is stable, provided that the aspect ratio is less than

about 0.2 and is unstable for higher aspect ratios. The stability

* In formulating the problem we have had the benefit of extensive discussion
and correspondence with Professor Koiter, for which we are extremely grateful.

Most of his suggestions have been incorporated in this paper, which owes much
to his generous help and advice.




at low aspect ratios is studied by means of an asymptotic

formula for the stationary value of the excess potential energy :
which is valid up to degree 5 in the aspect ratio. This agrees

well with the exact calculations up to fairly high aspect ratios.
Moreover, in the limiting case as the aspect ratio tends to zero,

it agrees precisely with the result derived by Euler on the basis

of elastica theory.




2. Statement of the problen

We consider a rectarigular plate of incompressible neo-Hookean
elastic material, which has its edges parallel to the axes of a
rectangular cartesian coordinate system x . Let § be the vector
position, relative to the origin of the system x , of a generic
particle of the plate in its undeformed state (state O) and let its

bounding surfaces in this state be
£, = zzl » &, = L, 53 = t£3 (L3>>£1,£2) . (2.1)

We suppose that the plate is maintained in an equilibrium
state of pure homogeneous deformation (state I), with extension

ratios Al,kz,x and principal directions parallel to the coordi-

3
nate axes, by normal forces applied to the surfaces 51 = tp and

53 = 123 ,» the surfaces £2 = itz remaining force-free. Let the
resultant loads applied to the surfaces gl = tzl and 53 = iLB

be *R, and R, respectively and suppose that R, < 0 (thrust).
1 3 1l -

In state I, we suppose that the surfaces initially at

El = £ and 53 = +f_ are constrained so that, in the deforma-

1 3
tion, they move parallel to the 1 and 3-axes respectively, but
points on them are free to move normal to these directions (i.e.
the tangential components of the surface tractions are zero).
Let X be the vector position in state I of the particle

which has vector position £ in state O . Then,

= = . 2-2
1 151 ’ 2 2722 °? x3 A353 ' A1X2A3 1. ( )
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We now consider that the plate undergoes a further deforma-

tion which is the superposition of a uniform stretch in the 3-

direction and a plane deformation parallel to the 12-plane. We

call the state which is then reached state II. We suppose that

the particle which is at X in state I moves to x in state II,

where
x=)£+13, (2.3)

and

ul = ul(cl’g2)’ u2 uz(gl’gz)) u3 = A3EE3 . (2'4)

Since the material is incompressible u must satisfy the relation

(1+E)()\lu2’2+>‘2u1’1 + u1,1u2,2' “1,2“2,1) + xlxas =0 . (2.5)

Let W and wII denote the strain energies, per unit

I
volume, in states I and II respectively. Since the material of

the plate is neo-Hookean, they are given, in appropriate units, by

_1l,2,.2. .2
Wy = 3(A +A5+A5-3)
(2.6)
L1 2 2 2 2 2 2 _
Wpp = glxg 1+ %00+ %7, ¢+ %7, + A(1+E)” -3] .
f With (2.2), (2.3) and (2.4), we obtain from (2.6)
E
W.. - W, = Au, . + Au, , + A3E
11 " W1 T AUp g A8 0 T A
1 2 2 2 2 2n2
*gugty vuly v uy Ty vuyy v AGET) (2.7)




We consider that state I is an equilibrium state. We con-
sider also that in state II the resultant loads on the faces of
the plate are the same as in state I and that, while state II is
not necessarily an equilibrium state, in it the particles of the
plate are at rest, at any rate instantaneously.

The Piola-Kirchhoff stress in state I, denoted nai is

given by
nll = 7\1 - tL. ’ 1133 = X3 - I—3— ’ (2.8)

the remaining components of My being zero. Then,

Rl = 4£2£3H11 ’ R3 f 4£1£2H33 . (2.9)

It follows that, in passing from state I to state II, the in-

crease in potential energy of the loads is

4,
- R,u - 2R_ALEL
171 €1=-£1 373%%3
22 Z1
= - 2£3I I (nllul,l + n33A3E)dEld£2 . (2.10)
‘La ‘31

Let GI and Gy be the potential energies of the system
(plate and load) in states I and II respectively. From (2.7) and

(2.10), we obtain, with (2.8),




+ %(ulfl + uzfz + ulfa + uz?;l + xgsz)} dg, dg, . (2.11)

Using (2.5) to substitute for u in (2.11) we can rewrite

2,2
(2.11) as :
£, 4 A XSEZ ' |
6= 2£3I J T WM12¥2,10 " Y% 0) Y TR
L -4 -
1, 2 2 2 2 2.2
+ 2—(u1,l + uz,2 + ul,2 + u2,1 + XBE )} d£1d£2 . (2.12)

The necessary and sufficient condition for stability of the
plate in state I, under the specified loading conditions, is that
G be positive definite for all u and E 1lying in a neighbor-
hood of u=0,E-= 0 and satisfying the constraint (2.5)

throughout the plate, as well as the kinematic constraints

E = constant everywhere,
(2.13)

u, = constant on El = £

1l i°

We shall investigate the validity of this condition when
state I is a critical state for existence of a bifurcation

solution.




3. The bifurcation solution

A necessary condition for stability of state I is that the
second variation of G be non-negative for all sufficiently small,
kinematically admissible values of ul,ua,E . This second varia-

tion Gz[“l’uz’E] is given, from (2.12), by

L A1

= 2 - X2E2

Gpluy,uy, El 2£3I J {7\: (uy,292,1791,1%2,2) * X2
-5 -4,

1 2,2
+ ?(“131+u2?2 + u132+u231 + A3E )} dé:ldE2 . (3.1)

ul,u2,E must satisfy the kinematic constraint implied by the

linearized incompressibility condition

1 1
TI ul’1 + X; uz,2 + E=90, (3.2)

which is obtained from (2.5), and by the conditions (2.13).
A sufficient condition for stability'of state I is that
Gz[ul,ug,E] be positive definite. Thus, state I is at the

stability limit if Gz[ul,uz,E] has a zero minimum for

some non-vanishing ul,ua,E .

We shall now determine the values of ul,ua,E for which G2
has a stationary value, subject to kinematic constraints (3.2)
and (2.13). These are given by setting the first variation
6G2 of 62 equal to zero. We take account of the constraint
(3.2) by the method of Lagrange multipliers and denote the multi-

plier of (3.2) by -2£3p . We then obtain, with the notation

A= Ae/ll ,




-t e

- 10 - .
2 M1 .
5G, = 223[ J Uy 13Uy o - g; Youy 4 ¢ (“2,2'1“1,1‘A2)6“2,2
-4, -4,
v (g pthuy g)8uy oo+ (U, gvAuy S)du,

+ (2A3E + A§E - p)éE}»dEldge =0 . (3.3)

This relation may be rewritten as

z z p’l p’

2 Y1
2
] J {(“1,11+“1,22' X Y8uy + (up 13%Up op” X, ) Su,

1
-(zxgﬁ + A\2E -p)(SE} dg dg,

3
L, L
- J [(ul’l-kuz’a- l)6u1 + (u2,1+>\u1’2)6u2]E -2 d€2
=L 1~ *1
2
L ¢,
- J [(ue’a-Xul’l— fZ)aua + (u1’2+Xu2,l)6ul] i dg; =0 . (3.4)
-2 E2"'52
1

-1 -
u +u xl p,l O ’

1 =
U 11 T Y200 X, Pry, =0, (3.5)
2.2 2 A
422,20 DE - j f pdE, dE,
‘te ‘31

Also

on 52 = ¢£2 (3.6)




and, with (2.13),

Up 1 =Y, 0,

£2 on El = itl . (3.7)
- - P -

I () 12,0 - 3045, = 0

-2, 1

Equations (3.5)-(3.7), or equivalent equations, have been
previously obtained by a number of workers (see, for example,
[1,2]) using somewhat different procedures. They yield, with

(3.2), solutions of the forms

-singg, | " cosqg,
4y = Y I u, = u,
cosf inQ
El, sinQ€
(3.8)
N
COSQ£1 XIB'
p = "):'s_'z'g ’ E=0,
s1nQ£l/
where
Q = nﬂ/Z!.1 (n=1,2,...) , (3.9)
the upper (lower) solution corresponding to n even (odd).
In (3.8) U is a function of £2 only and the prime denotes
differentiation with respect to ¢, . B8 is defined by
8 = U" - Q% , (3.10)

and U satisfies the differential equation
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u(V) | 3241)0%0" + 2%% = 0

and the boundary conditions
u" + 2%% = 0,

on £, = &, .,
m"ne 2 2

U™ - (22%+1)e%’ =0,

We obtain two possible solutions to (3.11) and (3.12).
With the notation

T]=Q£23

one of these solutions may be written as

U(g,) = M(coshig,-mcoshqg,) ,

Zkecoshxn
(A2+1)coshn

m=
where A and n satisfy the secular equation

4)3tanhn = (12+1)2tanhxn .

The other solution may be written as

U(Ez) = M(sinhAQ£2—msinhQ£2) s

szsinhAqA
(A2+1)sinhn

m =

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)




where A and n satisfy the secular equation

ax3tanhan = (A2+1)2tanhn . (3.17)

We note that for any specified n , each of the equations

(3.15) and (3.17) yields a unique value for i .

The deformations described by (3.14) are antisymmetric with
respect to the 13-plane, i.e. they are flexural deformations.
Those described by (3.16) are symmetric with respect to the 13-
plane, i.e. they are barreling deformations.

The two secular equations (3.15) and (3.17) can be rewritten

as
sinh(A+1)n _ | (A+1){A(A+1;2+(k-1)2} , (3.18)
sinh(A-1)n (-1 {+DZ-a-1)7)

where v = 1 for flexural deformations (equation (3.15)) and
v = -1 for barreling deformations (equation (3.17)).
We note that each of the pairs (3.14)2, (3.15) and (3.16)2,

(3.17) leads to the result

2 = )\SinhZ)\n . (3 19)
sinh2n

By substituting in (3.1) either the upper or lower expressions

(3.8), we obtain, by using (3.11), the result

L8 £2 2 ' ' "yt
G, = —1 I (3x +1)92cuu')' - uu")y' « @' dg, .

2 1292 .
“*2 (3.20)

We now carry out the integration and use (3.12) to obtain




G, =0 . (3.21)

We conclude that the critical state for which 62 has a

stationary value is a state of neutral equilibrium.

et e e ee—

et G e e
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4, Stability in the critical case of neutral equilibrium

We have seen in §2 that the necessary and sufficient con-
dition for the plate to be stable in state I is that G , given
by (2.12), shall be positive definite for all ul,uz,E lying in
a neighborhood of u, =u, = E =0 and satisfying the kinematic
constraints (2.5) and (2.13). We now develop this condition fur-
ther in the case when staie I is a critical state of neutral
equilibrium discussed in §3.

Denoting by ul, 4., E=0 , ﬁ the values of ul,ua,E,p

2’
given by equations (3.8), we decompose an arbitrary “1'u2’E in

the following manner:

E=F, (4.1)

where Vi Vs is orthogonal to Uy, Uy, i.e.

L, & ‘
I I (u vy +u ,V,y)dE dE, = 0, (4.2)

and a 1is given by

2 ¢ 1
J J (6, u, +8,u,)dE €,
- — e ;_t el e e ——— e .
.. 52 1 : @3y
2
f 2 [ 1 (G2+a2)ae, ae,
-, -4

Substituting from (4.1) in (2.12) and using (3.1), (3.5)-
(3.7) and (3.21), we obtain
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G = 2¢, I 2 [ 1{:%cvlfl+vzf2+vlf2+v2f1+A§F2) . !
'12 '51

A2F?

YAV oV5 17V 1Y0,0) t TeE

+ aﬁ(%: vyt %; Va,a)} dg,dg, , (4.4) ;

where p is given by (3.8). From the incompressibility con-
dition (2.5) and (3.2), it follows that Vs Vo F must satisfy

the relation

A A F oo o
+ + + -
MV2,2 T Y10 T TG a=(Uy 195,278 ,5Y2,1)
. ~ _ A - A
a(uy 4y 5 * Uy oVy gt Uy GV, gt Uy gV b))

=0 . (4.5)

+ -
Vi,1Y2,2 ~ V1,2V2,1

From (3.8) we obtain, by carrying out the integration with

respect to 51 s

2 &1
I pdg,dt, = 0, I J Py Uy 57Uy oUp 1)dE;dE,= 0 .

2 1 S e 't , (4.6) |

Then, using (4.5) to eliminate the term in (4.4) which is linear

in vl’l and V2,2 , we obtain with (4.6)




P ERE® - ap
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t2 b 2, 2, 2
G = 2L, I I {I{Vl 1"V2,2%V1 2%V 1t 3F %
'Lz ‘Ll
A2F?
*A2Y2,1 V12,2 T

A

2 A LA A A
T aTAp(Uy 1Vp p*U, oV 17Uy Vo U, 1V o)
) a)‘31’("1,1"2,2"’1,2"2,1)} dg,dg, . (4.7)

It follows from (2.13), (4.1) and (3.7) that

vl’2 = 0 for El = ill . (4.8)
For a fixed small value of a , we now determine the values
of vl, v2, F , satisfying the kinematic constraints (4.5) and
(4.8) and the orthogonality condition (4.2), for which G has a
stationary value. Since these values must be O(az) , Wwe intro-
duce the notation
2= 2

v, =a’u, , v, =a 62 , F=a

°E . (4.9)

_Then, neglecting terms of hlgher degree than the fourth in a ,

we obtain from (4.7),

X £2 £1
b= l -2 -2 -2 =2 252
G=aiG=a 2£3 I I {2{u1,1+u2,2*u1 o*u, 1+A E®)

s R 3
‘Lz ‘51

- - = = 2=2
* Ay U, g-uy U, o) 4+ AGE

~

- A3p(“1,1“2,2+“2,2u1,1'“1,2“2,1'“2,1“1,2)} dg,dg, . (4.10)
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Neglecting terms of higher degree than the second in a? » the

incompressibility condition (4.5) can be written as

2 1 - 1 byt ~ A ~ ~ =
a [TI “1,1+ T; u2,2+ E + ks(ul’luz’z-ul‘aue’l)] 0 (4.11)

and the orthogonality constraint (4.2) may be written as

62 21
a2 [ J (4,8, * G,3,)dE,dE, = 0 . (4.12)

-4, -4

We determine the values of u,, 62, E for which G has a

1
stationary value by equating its first variation to zero, re-
laxing the constraints (4.11) and (4.12) by the method of Lagrange
multipliers. We denote the Lagrange multipliers for the con-
straints (4.11) and (4.12) by -2£3a25 and 2£3a2x respectively,
where P is a function of 51,52 and X 1is a constant. We

thus obtain from (4.10), after some algebraic manipulation,

£2 zl
6 = 2¢, {-I [ (0,6T, + 0,67, - ¢oE)dE, dE,

L, -2

2 1

=-L

L - L,
e ~~A~-~**»A—¢~fv~~eiﬁﬁiA+~e§6u§]g—<-~4Adsl~~—f»»—~mw‘-~“-~nw~~~A<« -
.y 2 '

2

e, ¢
+ ¥, 5T, + weeﬁz] s dE%} =0, (4.13)
-2 L §17~%

where &G , 8T, , ou,, SE denote the variations of G, a,, d,, E

and

|




— 1— A A A A A
% T U1 tUi22 C X P A3(Psqly 5 - Pyplp 1) - XUy

- - 1l — PN ~ A A A
%y = Uy 13 * Uy op - %o Pop " A3(PagUy 3 - Pagly p) - XU,

¢ = -p+ (Ag + 22E ,

) = Up,p * Ay * AgPU, s (4.14)
0. =T, . - AL, . - v~ 5 - Apu
2 2,2 1,1 7 X p 3PU1.1 >
Y. =T, . - AT, . - =P - Apu
1 1,1 2,2 XI 3P%2,2
¥y =uy o+ Auy 5+ Agpuy

From (4.13) we obtain, bearing in mind that 6E is constant

throughout the plate,

. =0, ¢_=0, I ¢d£1d62 =0 . (4.15)

o, = 8, = 0 for £, = t£2 , (4.16)
and
ﬁ,A_r;,,f,, — S, — - e s e ————
62,1 =0, 61 = tA1€£1 , say ,
., for £, = 2, , (4.17)
I v.dg, = 0,
-2,

where e 1is a constant.




Equations (4.15)-(4.17), together with the conditions (4.11) and

(4.12), yield the values of ﬁl, ﬁé, E , subject to the kine-

matic and orthogonality constraints, for which G has a station-

ary value. We discuss the solution of these equations in the next

section.




5. The deformation for which G has a stationary value

Introducing into (4.14) the expressions (3.8) for

ﬁl, 62, p , we obtain from (4.15) and (4.11)
T ..+ T l 5. = (8"U - B'U')sin2ng, + xi
1,117 1,2 XIP ” 1 * Xuy ,
Uy 11t Up 00 Xl‘3 ""‘_2 z {(8'U")’
’ ’ 2 2A°A Q (5.1)
+ w("U' - 8'U")cos2ag,} + xi, ,
£, "1_ 5 5. =
[ Bdg,dE, = 42,2,002 + 2)E
-£, -4,
and
— 3 Tty !
2X (ua s * Aul,l + Azﬁ) = (UU) - wacosZQEl , (5.2)
where
a=Uuu" -u'?, ' (5.3)
and w =1 or -1 accordingly as the upper or lower solution

is taken in (3.8).
- ——8imilarly, the boundary conditions (4.16) may be wrltten as

- = - WU .
u, 5t A“z,l Zxxﬁﬁ stQgl ,

’ 2 on g, = tla . (5.4)

_ _ — U'B'
u - Au - = - = (1 + wcos2QE&.)
§E 23230 D




where V and Q

and ﬁl’

which U

the following solution of equations (5.1)1 2 and (5.2), for
Hd

10 Uy 1is orthogonal to Uy, Uy

i, =T

1 1 smzm;l + Alegl ,

G, = U cos2Qe, + V ,
2 1 (5.5)

P =P cos2gE. + Q ,

x =0,

are given by

<
"

7%— u' - A, + B)E,
2 (5.6)
%_(qu)' + 1 B'U'

2 - -—
- 22(2¢ + E)
22°g° 2

Sl
i

U and P are functions of §, only, which satisfy

the ordinary differential equations

and the

o, 2= 20P w "
U‘4QU1+TI=1ZXX—2—Q'(BU‘BU),
— =

" - 4% - o= o 8 (g"y' - g'U") (5.7)

L 232102 ’
”ﬁi'*MZkﬁﬁi =~~m§%zh . e
boundary conditions
U, - 20U = 5357 8'U ,

e on £, = tf, (5.8)
U' - 2aq0, - B2 . w g'y'

1% 222x, @2 ’




-23-
From (S.])1 3 we obtain
»
l-] = - 1 (ﬁl + wa )
1 Y1) 27; ’
X (5.9)
P 47;_5 {U" - 4220 + ZQX; [a"- 40%a + 2(8"U - 8'U")]} .

Then, from (5.7)2 we obtain with (5.9)2, (5.3), (3.10) and (3.11)
=(iV) | 102y 2,07 2.4 3002 .2 o\ o
U - 4@ (A%+1)U + 16A°Q7U = - >y— (A"-1)a . (5.10)
With (3.14) and (3.16), equation (5.3) yields

a = sznz{xa + m° - % m[v(x-l)zcosh(k+l)952

+ (x+1)%cosh(r-1)0¢,1} . (5.11)

Substitution of (5.9) in (5.8) yields, with (3.11) and (3.12),

the boundary conditions in the form

Uu" + 42°0%0 = - . a2 (72%+1yuu" , j
2
on £2 = L, . (5.12)

U - 42r%+1)e%" = %2 (22%-1)0%'?
2

We note from (3.14) and (3.16) that

u'? - 3 M2a?{3%cosharag, + mPcoshzag, - v(32sm?)
- ZAm[cosh(A+1)QE2 - vcosh(k-l)ﬂgzl} .

o= % Mzﬂ{ksinhzxnf,2 * mzsinhZan (5.13)

- m[(A+1)sinh(A+1)QE, + v(x-l)sinh(k-l)ﬂgz]} .

A s il | e e stemialben:. _ wcm .



It can easily be verified, using (5.11), that equation

(5.10) has a solution of the form

U = Mlsinhzmg2 + MesinhZQiz - M35inh()\+1)Qg2 - Mhsinh(k-l)ng2 , 1
(5.14)

where, provided that X # 3 ,

2
C 300 2 (A2-1) (A+1)
mM
3 3% (31+1) (A+3)

=
[

. (5.15)
3wl 2 (A\"-1)(A-1) f
vmM . r
L (31-1) (A-3) ;

M),

The integration constants Ml and M2 are determined from the

boundary conditions (5.12), with (5.13), as

2
M, = 2 {432 coshzn - (\%+1)f,sinh2n}
32 XA,
2
(5.16)
wQM2 . 2
M, = {Af251nh2An - (A®+1)f_cosh2in} ,
1
16A2A
where
3. 2 2 .
A = 4)x°sinh2Aincosh2n - (A“+1)“cosh2insinh2n ,
f1 = m{f(x)sinh(k+1)n - vf(-A)sinh(A-1)n}
-(722+1) (Asinh2in + m°sinh2n) , (5.17)
f2 = m{g(A)cosh(A+1)n + vg(-A)cosh(Ar-1)n}

- 4(2A2-1){A2cosh2kn + m2cosh2n - v(x2+m2)} ,

with f(X) and g(A) defined by
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5
|

2 2
£(0) = (1) { FA LG 22M) 552, gy
(3x+1) (A+3)

(5.18)

3(02-1) (A+1) (722-2x+3) + 8a(222-1)
(3x+1) (A+3)

g(i) =

——

The constants E and e can be obtained from the relations

(S.l)3 and (4.17)3 which express the dead-loading conditions on the

faces g3 = +f and 51 = +f respectively., Using (S.S)3 to

3 1
substitute for p in (5.1)5, we obtain with (5.6),,

2 2\E - . .1
(323 «+ADE+ nje = - 3 H, (5.19)
where
£,
H= —31 J w"? + @%u'%)ae, . (5.20)
252 2
2A°0N°e
2 -£2

Substitution from (5.9) and (3.8) in (4.14)6 yields

/
A
1 r—" 206277 w ' ' i
yoo= - 110" + 42%%0 + (a'+ 28'U ) | cos2ae
1 4202 | 2, i '
= -1 : 2
+ fL-{ngE + 3EadhHE + 55 e 2%y’ %
1l A0
jl
- ——33—5 {u'(u"+ G (5.21)
A, 120 J

From (4.17)3 and (5.21) we obtain, with (5.12), (5.3), (3.10)-
(3.12) and (5.20),

25 2,..2y% o
Z2AZE + (3AZ#A])@ H . (5.22)

Equations (5.19) and (5.22) yield




AL H A_MH

- A3 2. - _ 3 3
E=y 021, §=-2—(@nd, (5.23)

with
Kk = 5A3 + 3A(AA§+1) + Ag ) (5.24)

With (3.14), (3.16) and (3.19), equation (5.20) yields

2 .
H= 12202y + 223 sinh2in } (5.25)
A2+l 2an




6. Stationary value of G

We now use (5.5); , and (3.8) to substitute for u,, 52,
]
Gl, 62, ﬁ in (4.10) and carry out the integration with respect

to &, . We obtain

£2
G =20y [ eyt gpide, (6.1)
-22
where
2--2 2,,2\52 - ! 1 oy ore
g, = A7e° + (2A_+AJ)E° - e(2A,V + BU) +V
1 1 2 '3 2 A292
1 o=l R IO |
+ ———=V B U
A 120" ’ (6.2)

1 272 , w2, mre 2r2 s
8, = 7 {40 Ul + U1 + U “+ 4Q°U 4AQ(UU1)

] — "n— —_—
» 98 '~ 2aau'U, + 207U - ARUUD] .
WL

By using (5.6)1, (5.19) and (5.22) in (6.2)1 and (5.9), (5.3),
(5.10) in (6.2)2, together with (3.10) and (3.11), we obtain

- 28E (y"2, 2u'2- 1a2%0%m - (U’ u"n\%%W)]'}

1 A2QZ
. —15 Unf)'[(UU')' + _{LE B'U'] ,
4\ ATQ
2 (6.3)
g, = - —3%__ qgeu"s 2%%0) - 28'U' U
2 2~2
161,120
+ ———l-—-E {a'2+ 40%2 + 4a(B'U"- A%%s0)}
32A§x29
' 2~27 i 11 2 2 -
¢ Lo U@+ 2% - DU - 40T (227U

|
E

4
| ]
|
I
P
f
|
l
|




Ut e - u'n” - 20%u0u)

E M

hry "2 2,42 " 2,12 2
+ -Z-A—a U[6U “+ 3Q°(AS+1)UU - QU “(5A7+11)

+ 302(0%2-1)a + 68'U" + (2u"- 38) (u"+ A22%U)]

In deriving the relation (6.3)2, the following identity is used:

{22(A%-1)a - 8(u"+ 1%%U) + 28'U"} = 0 . (6.4) d

We now substitute from (6.3) din (6.1) and use the boundary con-

\
ditions (3.12) and (5.12), together with (5.23), to obtain

G = - 4212213(Pl+ T, + F3+ T, - FS) ,
where
Ay o2 3 2
ro= g2 (A% ¢ ands DS,
r, = —— [0 W% 2%%uBy, _,
4r2p 2=45
272
ry = —— [-(722+1)uu'T'+ 41 2+1)u'20] ,
161,1%¢,, £,L,
1'2
o
P, o= 3w [s(u”+ 222%u) - 2g'v’1U'de, ,
L 5.2 2
3222202
2 2 -t
22
P —2L1 J [o'2+ 40202+ 4a(8'U'- 2202gU)
> 64x2120%
2 2 -t

+ 168'0" (UU") "+ 8A292(UU')'2]d£2 ,




and k and H are given by (5.24) and (5.25).

We now introduce into (6.6) the expressions (3.14), (3.16)
and (5.14) for U and U, together with (3.10), (5.11) and
(5.25), and after carrying out the integrations, we obtain, with

the notation

M = M/2¢ (6.7)

2 »

the following expressions:

- 2_ .

1 X2+1 2An
M'n3r, (12-1)2 s a .
P2 = - 5> sinh2An{v(1°-1)m“ + 2A%cosh2An
22 (A%+1)
+ (A2+1)m2cosh2n
- 2am[(A+1)cosh(A+1)n+v(A-1)cosh(A-1)n]} ,
ﬁh”3l3 2,42 2 2 .2
Ty = 3 {8A(A%+1) Ty Y5+ (7A%+1) (A°-1) y,sinh2in} ,
12817 (A%+1)
_ (6.8)
025 0% { 3 Lo, (k,aeK) (K, k-4)]
r, = ng, + g, (k,4-k) + g, (k,k-
b 642" b7 ogay H b
2
+ 1 [y (k-1,3-k) + gy (k,k-2)]1}
k=1
AL P loo(k,a-k) + oo (kel,k-3)]
r = ng + 4 & + Z +1,Kk-
5 3223 5 "kto 0 5

2
[C (k'193°k) + (k,k‘Z)]} ’
+k§1 5 5

where the ¢'s are given in the appendix (§9), x 1is defined

by (5.24) and Yir Yp» Y5 aTE defined by

——




Y, ® FlsinhZXn + Fasinth
-m[F3(A)sinh(X+l)n + vF3(-X)sinh(A-l)n] ,

Y, = ZAFlcoshZAn + 2F2cosh2n
-m[(A+1)F3(A)cosh(X+1)n + v(A-l)F3(-k)cosh(k-1)n] . (6.9)

Y3 = A%cosh2An + mgcosth -v(k2+m2)

-2Am[cosh(A+1)n -vcosh(A-1)n] ,

with Fl, F and F3(A) defined by

2
F, = L (ax®g coshzn - (A 241)£,sinh2n] ,
F, = %r [Af,sinh2in - (A 2+1)£ cosh2in] , (6.10)
F_(A) = 24A A2-1) (A+1
3( ) = + +

Here, 4, f1 and f2 are given by (5.17) and m is given by

(3.14) if the deformation is flexural and by (3.16) if it is of

2 is given by (3.19).

the barreling type. In either case m
Introducing (6.8) into (6.5) we obtain an expression for G

in the form

G = 42,0, 0030 (F,- KT (6.11)

where

1 .2
K== (TA%+ 4Ax§ L

-

2 : 2
= . 2_142 A°-3 sinh2An
g, = n(2-1) (\, v 13 s >

(6.12)

. e vt e e o e aa e




2 2
2A2§2 = Lialll— sinhZAn{v(ka-l)m2+2A2cosh2An+(A2+1)m2cosh2n
AC+]

-2xm[ (A+1)cosh(A+1)n+v(A-1)cosh(A-1)n]}

S S {sxcx2+1)zyly3+(7x2+1)(x2-1)27251nhzxn}

6413 (22+1)

2 3
- 3D e T (g, (k,4-K) + gy (K,k-4)]
3222 bogs1 M

2
+ 1 [3,(k-1,3-k) + g (k,k-2)]}
k=1
1 3
+ 5% {nCS +k§0 (Cs(k’4'k) + Cs(k"l,k‘:")]

+

[e5(k-1,5-K) + t5(k,k-2)]}

ne--1n

k=1

In §8 we show the numerical dependence of G on n .
However, before discussing this we shall consider, in the next
section, the asymptotic case when n is small, i.e. when the

aspect ratio 22/21 is small, and the bifurcation is of the

flexural type.




7. The asymptotic case of small aspect ratio

In principle we could find an expression for G , for a
flexural bifurcation, in the limiting case when n << 1 , direct-
ly from the expression (6.5), where the TI's are given by (6.6),
by expanding the T's in powers of n and neglecting all but the
leading term in the expression for G so obtained. However, this
leading term would be of degree eleven in n and the labor in-
volved in obtaining expansions of this degree for each of the T's
would be excessive. We recognize that this difficulty arises from
the fact that, for n << 1 , the expression (3.14) for 0 is
O(ng) and the expression (5.14) for U is O(nh) . Accordingly,
in this section we return to the equations (3.11) and (3.12) for
i and obtain a solution, in the form of a power series in n ,
which is normalized so that 32(21,0) =1 . With this expression for

A

U, we solve (5.10) and (5.12) to obtain a corresponding expression

~

for U, in the form of a power series in n . With these ex-

A

pressions for U and 6 , we then obtain from (6.5) and (6.6)

an expression for G , again as a power series in n .

We define the dimensionless thickness coordinate t by

t=E,/L, . (7.1)
Then, with the notation

U(t)

U(Let) , (7.2)

we obtain from (3.11) and (3.12)




1 d'U A+1

and

21 n
L 48 433 .o,

n2 dt2
for t =t 1. (7.4)
36 ~
1 43y 2..,1 dU _

The critical value of X at which a flexural bifurcation
can occur is related to n by (3.15). It has been shown [ 6]

that for n << 1 , this relation may be written as

A =1+ a1n2 + a2nh + a3n6 + 0(n8) , (7.5)
where
a, =%, a, =3, ... . (7.6)

With (7.5), we can obtain a solution of (7.3), with the boundary

conditions (7.4), in the form

Ut) = 1+ Apgn2t? + nf(aytR + Ayth)
P00y t? + Attt + agth) v omd) (7.7)
where
Ay T A3 Apt-go

(7.8)




We note, from (3.8), that we have normalized the solution (7.7),
so that the displacement ﬁ2(£l,0) = + 1, the +(-) sign being
applicable if %n , Or %(n-l), is even (odd).

With (7.1) and the notation

- 27 7\
U = a .o _ 1 /42d7U du }
U(t) = U(Zzt) sy @ = ——92 = ——n2 {U E-t? - (a—f) ’ (7.9)

we can rewrite (5.10) and (5.12) as

b~ 2 2~ -
14U 404D 4, 962 - - Jef (2. & (7.10)
;E dt” n2 dt 2" a
and
1 d%0 , ,,2; w 2
= —— + 4\°U = - (7A +l)U )
2 acl Zx,n
for t =+ 1 . (7.11)
3~ ~ A
1 4°U 2 dU - 2uwQ 2_ dU>2

2ﬂ

With (7.5)-(7.9), equations (7.10) and (7.11) become

- 4’0 402 @5, 16,25 . 800X n 2{
n th 02 dt2
 eeeded) + o) 07.12)
53 n :
and
2~
1 d°U 2% _ ok 2.2, 264 6
;E 525 + 4)\°0 wQA3n{} + zN + 15" + 0(n7)y ,

(7.13)

1 430 - a2 +1)l du mnxgna{} + 4n2 + O(nh)}
n3 de3 for t = = 1
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It follows from (7.12) and (7.13), with (7.5) and (7.6),

that U may be expressed in the form

§ = warX 3 3 5 3 5 1
U mﬂk3{Bllnt + n7(Byyt + By,t7) +0n (B jt o+ B3 t o+ B33t )
+ (Bt +...+ B, tT) + 0(n?)} (7.14) |

where

(7.15)
2 - _ 21
B32'-§" B33 ’ Bh3 ’ Bh]* Tg )
We shall not require the values of By,s By,
With (7.1), we now rewrite (6.6) as
. Qh (732+ 4223 + 1)B?
r, = A2+ 4aa3 + 1 ,
1 16XEK 3
A2 fa g (dﬁ 2 > 2"%}
I, = U + An°U s
2 " 4an® a?'[ at t=1
A3 2. . rdli? ~ af af
s (ot - oo )
n
;53 A A
Jwd3Q 1 2
3 I {~ a°u 2 2 dg du }
r, = s( + A°n U 2 at ,
b7 550072,3 ' qt2 dt dt
4
A0 1 A A
- 3 2/da\2 ) gA( 8 df .2 245
s WJ{”(H)”‘““‘MRH AnTE
-1
~aan -~ A 371712
dg dU d (A du 2( d du 7.16

where & is given by (7.9) and 8 and H are defined by

i




w0
[]

o ol
n

We now substitute from (7.5), (7.7) and (7.14) in (7.16)

and, after carrying out the indicated integrations, we obtain h
i
s[1_3 2 /91 1 b 6
T. =20 | % - xn°+ + ————)n + 0(n7) |,
A (56 36(2+A§)) 1
L1 8 L 6
P2=)\3Q ‘1-*'1—5'71 "‘O(T'I )J)
v{1, 7 2 25 u 6
P3 = ABQ _§ *gg Nt wp 0 ¢ O(n )] s (7.18)
w3 17 _u 6
! 2
Ty =A% | etz *0(“)]'

4 I
et (3 g% e Bt e 00 ]

With (7.18), we obtain from (6.5) and (4.10)

N

_ aiz.e.x
6 =3 - _'—1'33_3 ns[G* + O(nb')] ,
645 (7.19)
* 2 1 2
G =1 - 16 + n- .
3( 2+)\§)

We can compare this result with a result which was derived
by Euler on the basis of the elastica theory. In order to do this,
we first calculate the energy associated with the flexural defor-
mation aﬁl, aﬁ2 when the applied load is zero. Accordingly,

in (2.12) we take A, o= A2 = 1 and substitute u,, u,, E =




au, , aﬁa,

0 , where ﬁl, ﬁ2 are the values of u,, u, given

in (3.8) with U = 0 given by (7.7). Denoting the resulting

value of G by 6 , we obtain

2
8a“L. L
- 173 _k 2
G ——gzz——lw [1 + 0(n )} .

(7.20)

Then from (7.19) and (7.20) we obtain, with A3 =1,

2.2
2 - a n2 1 + 0(n2)
G 1627

For the flexural mode of lowest order, we have
and (7.21) may be rewritten as

2.2
G 7°a 2
= 1+0 b,
g 64,3?[: ' ( ) ]

in agreement with the result of Euler.

LR

(7.21)

n = w£2/2£1 ,

(7.22)
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8. Numerical results

The critical value of X at which a bifurcation occurs is
related to n By (3.15) or (3.17), accordingly as the bifurcation
is of the flexural or barreling type. These relations are plotted
as Curves I and II in Fig.l. Similar curves have been shown
previously by a number of authors (see, for example, [2]).

The approximate relation (cf.(7.5) with (7.6))

)\=1+%n2+%-gnh, (8-1)

valid in the flexural case for small n, is plotted as Curve III.
The asymptotic expression (7.19) for G , valid for flexural
deformations, has been calculated on the basis of an expression
for § , mnormalized so that its component 4_(£.,0) = =1 ,
accordingly as % n, or %(n~1), is even or odd. In order to
compare with this expression for G » the exact expression given
by equations (6.11) and (6.12), we have to normalize, in the same
manner, the expression for u on which it is based. From (3.8)

~

and (3.14),, we have
62(31,0) = + M(1-m) , (8.2)

where m is given by (3.14)2 and the +(-) sign is taken
accordingly as % n, or %(n-l) , 1s even (odd). Accordingly,
in order to normalize our results in the desired manner we must

take

M= T~ and M= m . (8.3)
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With this expression for M , we can rewrite equation
(6.11) as (cf.(7.19)1)

- L.2_X
G = 1733 n6G* , (8.4)

2

where G* is given by

G* = _—_3_—]: (§2-K§l) ’

(8.5)
2n3(1-m)

and m is given by (3.14),, while El, §2 and K are given
by (6.12) with v =1 .,
The relation between G¢* and n provided by (8.5), with
x3 =1, 1is plotted as Curve I of Fig.2 for n < 0.6 . Curve
IT shows the relation between G* and n provided by the asymp-
totic formula (7.19),, with A3 = 1 , and we note that
the agreement is good at the lower values of n . In Fig.3 the

relation between G° and N , provided by the exact formula

(8.5), with X3 =1, is plotted for a wider range of values of n.

Calculations for larger values of n than those covered in Fig.3
indicate that the G* vs. n curve continues smoothly, with G*
tending to -» as n + o~ (i.e., X - 3.383). We note (see §5)

that our calculations have excluded the case when A = 3 (i.e.,
n*1.63). It was not considered worthwhile to investigate this
case separately, since our computations indicate that the G* Vs,
n curve passes smoothly through this point.

2 .
From Fig.2 or 3, we see that G is positive for values of

n below about 0.32. For the lowest flexural mode this
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corresponds, from (3.9) and (3.13) with n =1, to an aspect

* -
ratio £2/£l %~ 0.20. For larger values of n , G is negative.

Accordingly, state I, the homogeneous state corresponding to the
critical value of ) at which a flexural bifurcation occurs, is
unstable if n > 0.32, and stable if n < 0.32 and this stability

is not preempted by the appearance of a mode of lower order.

We note that for a specified value of n , the critical

value of A , given by (3.15), is independent of A3 . It

follows from (3.14)2, (5.17) and (5.18) that 4, fl and f2 are

independent of A Then, from (6.9), (6.10) and equations

3
(9.1)-(9.4) in the Appendix, it follows that Yis Yos Y3 and the

g's in (6.12)3 are independent of A3 . Consequently, El and

§2 are independent of A3 . Also, for a fixed value of XA , the

quantity K , defined by (6.12)1, decreases monotonically with

increase of XB . Hence, from (8.5), G* changes monotonically

with A3 . However, the dependehce of K, and hence of c* ,

on A3 is very slight.

For barreling deformations, the exact expression for G is

given by (6.11) and (6.12), with v = - 1, We cannot normalize

the displacement U on which it is based in the same way as we

~

did for flexural deformations, since ﬁa(tl,O) = 0 for barreling

deformations. Instead, we now normalize u so that Gz(zl,Lz)

-~

= + 1 accordingly as % n, or %(n-l), is even or odd by taking

=M 1
M = 22; ZZQTSinhAn-msinhnT ’ (8.6)




where m 1is now given by the expression (3.16)2, appropriate to

barreling deformations. With this expression for M we can now

rewrite (6.11) as

- 2,2
]
= 2233 c* , (8.7)
2
where
3,— -
n~(g,-Kg,)
G* = 2 "1 T (8.8)
(sinhAn-msinhn)
G* is plotted against n in Fig.4 for the case when
x3 = 1 . As in the case of flexural deformations the dependence
of G* on XB is very slight. We note that c* , and hence
G , 1s positive for all n . Accordingly, the homogeneous state

corresponding to a critical value of A at which a barreling
bifurcation occurs is stable.

We have included the discussion of barreling bifurcations
for completeness. However, it is well to realize that, for a
specified aspect ratio 22/21 , as the load is increased values
of ) corresponding to flexural bifurcations of all orders are
reached before any barreling bifurcation is attained. Even if
these could be inhibited, the barreling bifurcation of highest
(theoretically infinite) order is reached first, corresponding

to wrinkling of the free surfaces.




9. Agpendix

oy = 3 022 1{O-DF ) + (eDF (MY,

32

05 = s(16[2202-1)m2 + 220 %em*) + (A%+m

(2D [+ 3+ a-n3

« 2[0-DY + 0D a2 nn® - 0212020} .

The quantities ch(j,k) and cs(j,k) introduced in §6 are

defined by

7,03,K)
6,0 = Sy sinh{(GA+K)n}

] . fs(j,k) ) )
Cs(J,k) oy e I sinh{ (jA+k)n}

where j and k are integers and

- 2 - 2
;h(S,l) = -a(r-1) mFl , ;h(S,-l) -vA(A+1)“mF{ »

-v(A+1)2mF2 ,

: 7,(1,3) = -(-D%F, , T,(1,-3)

7,(2,2) = 3 O+ (-1%F, ()

| Z,(2,-2) = 7 (-1 (A+1)ZnPF (-0,

} -
: T,

i 2,00,2) = {163%F,+ n?[01)3F500) + (A-1PE3(M]Y

(2,0) = 3u{163F+ n?[(A+1)3F; (1) + (-1)F3 (-1,

Z,(1,1) = -vO+RIAEE, () + O*1) OF+Fp) ),

Z,(1,-1) = -(k—l)m{4A2F3(-A) + (A-1) (AF*F) 1,

A T
Hal

AN "’\)ﬁ

The quantities i, and ts introduced in §6 are defined by

(9.1)

[V

(9.2)

(9.3)




and

T4,0) = 6nt2aB-1) , T500,4) 64x%m" ,

T (3,1) = 322 1)mi (A+1) (332-1) + 2A(A-1)} ,

Ts(3,-1) = -329A2(A-1)m{(A-1) (3A%-1) - 2x(A+1)} ,

T5(1,3) = -eaa(A+1)m3(22+2x-1) ,
T (1,-3) = -64vA(A-1)m3 (A%-2x-1) ,

T ,(2,2) = m2{(A-1) % [4- (A+1) (32-1)]
+ 8a+1)3(02432-2) + 32223021},

T(2,-2) = am2{ (A+1) 4 [4- (A-1) (3A+1)]
+ B(-1)3(02-3r-2) + 3EGAEDY (9.4)

T(2,0) = av(r2-1) (m2(12-1) (502+3) - 3222(x 2em?y} ,
7T (0,2) = av(A2-1)m2((22-1) (322+5) - 6427} ,

T (1,1) = -32v(A-1)m{ (A2+m?) (A-1) (AZ-2+2)

i - 2A(A+1) [mP+A (A2432+1) 1),

T (1,-1) = 2320 1ym{ (A24m?) (A+1) (AZ+2+2)

 2(A-1) [m2-A(A2-32+1)10 .

e o e e .
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Figure Captions

1 Relation between n and critical values of A
Curve I: flexure; Curve II: barreling; Curve III:

asymptotic expression, correct to O(nh)

2 Relation between G* and n for flexure, with A3 = 1 .

Curve I: exact expression; Curve II: asymptotic expression,

3 Relation between G* and n for flexure, with A_ =1 .

correct to 0(n2) .
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